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Abstract. We derive the effective low-energy theory for single-wall carbon nanotubes including the
Coulomb interactions among electrons. The generic model found here consists of two spin- 1

2 fermion chains
which are coupled by the interaction. We analyze the theory using bosonization, renormalization-group
techniques, and Majorana refermionization. Several experimentally relevant consequences of the break-
down of Fermi liquid theory observed here are discussed in detail, e.g., magnetic instabilities, anomalous
conductance laws, and impurity screening profiles.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.)
– 71.20.Tx Fullerenes and related materials; intercalation compounds – 72.80.Rj Fullerenes and related
materials

1 Introduction

The fascinating electronic and mechanical properties of
carbon nanotubes have recently attracted a lot of atten-
tion [1]. Nanotubes are tubular nanoscale objects which
can be thought of as graphite sheets wrapped into a cylin-
der. Shortly after their discovery during the carbon-arc
fullerene production [2], theorists have made a surprising
prediction linking structural to electronic properties [3–6].
Specifically, the arrangement of carbon atoms on the tube
surface is determined by the integer indices 0 ≤ m ≤ n of
the wrapping superlattice vector T = na1 + ma2, where
a1 and a2 are the primitive Bravais translation vectors
of the honeycomb lattice. Depending on the choice of n
and m, a (n,m) nanotube should then be either a metal,
a narrow-gap semiconductor, or an insulator. This the-
oretical prediction has been amply confirmed in recent
experiments [7–11].

Nanotubes can be fabricated using either the carbon-
arc method [2,12] or a novel laser ablation technique [10],
where Co- or Ni-doped graphite targets are laser-
vaporized. The carbon-arc process usually yields multi-
wall nanotubes (MWNT) composed of several concentric
graphite sheets. One can then attach metallic leads to
such a MWNT and measure, e.g., the magnetoconduc-
tance. The MWNT experiment by Langer et al. [13] shows
typical signs of a weakly disordered mesoscopic system,
such as universal conductance fluctuations or weak local-
ization phenomena. On the other hand, the laser ablation
method allows for the controlled fabrication of single-wall
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nanotubes (SWNT). Rather large quantities of metallic
(n, n) “armchair” nanotubes with n = 10 can be obtained
using this technique [10]. In most cases, the SWNTs spon-
taneously crystallize in triangular-packed ropes contain-
ing ≈ 20 to 100 SWNTs, to which one can again attach
leads and perform transport measurements. The experi-
mental results of Fischer et al. [14] have shown a linear
temperature dependence of the resistance above a (non-
universal) crossover temperature, with an increase of the
resistance at lower temperatures. In addition, the exper-
iments of Bockrath et al. [15] showed Coulomb charging
effects [16] in such a rope.

One can in fact also produce single SWNTs using the
laser ablation process. From a fundamental (and theoreti-
cal) point of view, a single SWNT is an intriguing system,
since Coulomb interactions induce a breakdown of Fermi
liquid theory [17] in any one-dimensional (1D) metal. As-
tonishingly, Tans et al. [18] were able to attach contacts to
a single 3 µm long (10, 10) armchair SWNT. The trans-
port measurements of reference [18] were dominated by
charging effects due to large contact resistances [around
500 kΩ] between the leads and the SWNT. By finding
a way to decrease the contact resistances one could cir-
cumvent charging effects, thereby allowing one to study
the peculiar properties of a 1D conductor. Nanotubes are
potentially much more stable 1D conductors than conven-
tional systems such as chain molecules [19], edge states in
the (fractional) quantum Hall effect [20], or quantum wires
in semiconductor heterostructures [21]. In these systems,
non-Fermi liquid behavior has been notoriously difficult
to establish experimentally.
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As has been demonstrated in reference [18], a metallic
SWNT constitutes a perfect experimental realization of a
1D conductor. Interacting 1D electrons exhibit Luttinger
liquid rather than Fermi liquid behavior characterized by,
e.g., the absence of Landau quasi-particles, spin-charge
separation, suppression of the electron tunneling density
of states, and interaction-dependent power laws for trans-
port quantities. For detailed accounts of the physics of
Luttinger liquids, see, e.g., references [22,23]. In this pa-
per we describe the nature of the non-Fermi-liquid state
in a SWNT by deriving and analyzing the effective low-
energy theory of carbon nanotubes. This state should be
observable as soon as charging effects are overcome by
lower contact resistances. A brief and incomplete account
of our results has been given in reference [24].

The role of Coulomb interactions is most pronounced
if the nanotube is metallic. What are the conditions
for metallicity? A necessary condition arises because the
Fermi vector should obey the transverse quantization con-
dition T.k = 2πI for an integer I. The first Brillouin
zone of the honeycomb lattice is a hexagon, and band-
structure calculations [25,26] show that the only gapless
points are the corner points of this hexagon. One then
finds that there are exactly two independent Fermi points
denoted by K and K ′, with two linearly dispersing bands
around each of these two points. Imposing the transverse
quantization condition for the Fermi vector correspond-
ing to K (or K ′) implies 2n + m = 3I. If this condition
is not fulfilled, the nanotube exhibits the “primary” band
gap ∆E = 2v/3R ≈ 1 eV, where v is the Fermi velocity
and R the radius. We mention in passing that a nanotube
without primary gap has a finite Fermi momentum only
if n−m = 3dI, where d is the highest common divisor of
n and m [27].

Even if the necessary condition 2n + m = 3I is ful-
filled, the rearrangement of local bonds due to the cur-
vature of the cylinder can introduce a “secondary” gap,
∆E ≈ 10 meV, which implies narrow-gap semiconducting
behavior. For very small tube diameter, e.g., for a (6, 0)
tube, due to the strong curvature-induced hybridization of
σ and π orbitals, this effect can be quite pronounced [28].
In the case of armchair nanotubes (n = m), however, the
formation of a secondary gap is prevented by the high
symmetry, and therefore a (n, n) SWNT stays metallic
for all n. The highly symmetric structure of (n, n) (and
(n, 0) “zig-zag”) nanotubes also prohibits chirality, i.e.,
the carbon atoms close around the waist of the nanotube.
In contrast, all other nanotubes show chiral behavior [29].

One-dimensional metals are expected to exhibit a
Peierls instability due to the spontaneous formation of
a lattice distortion. It has been argued in references [3,
6] that this instability should not be of any practical im-
portance in nanotubes. Mean-field estimates of the Peierls
transition temperature yield very low values (≈ 1 K), and
fluctuations will then tend to wash out the instability even
further. We therefore neglect coupling to lattice distor-
tions in the following.

So far we have discussed the case of a perfectly clean
SWNT. Nevertheless, there are various sources for impu-

rities, e.g., structural imperfections of the nanotube (like
substitutional atoms), charge defects in the substrate,
topological defects, or twists. Topological defects are dislo-
cations (kinks) that locally change the superlattice vector
T by replacing one of the hexagons in the graphite net-
work by a pentagon or a heptagon. Such a change typi-
cally introduces a metal-insulator interface. By combining
a kink and its antikink (dislocation pair), it is possible to
form local metal-insulator-metal junctions [30]. Transport
is then dominated by tunnel events through this barrier.
A less dramatic but probably more widespread source for
backscattering is given by twists of the nanotube. These
twists can originate from the momentary position of the
SWNT when deposited onto the leads, or from thermal
fluctuation modes [31].

Generally, especially in the presence of impurities, pro-
nounced effects of the Coulomb interaction on transport in
1D metals can be expected [32]. As shown in reference [33],
at very low energy scales transport is fully blocked by a
single arbitrarily weak impurity. The conductance then
vanishes as a function of temperature and/or voltage with
anomalous interaction-dependent power laws. This effect
can be understood in terms of the Friedel oscillation [34,
35] building up around a scatterer in a 1D metal. The os-
cillatory charge screening cloud displays an algebraically
slow decay away from the impurity and thereby causes
an important additional backscattering contribution [36].
This crucial effect cannot be captured by linear screening
[37]. The dielectric function approach to impurity screen-
ing in SWNTs [38] is therefore practically useless in a
determination of the Friedel oscillation.

Below we focus on a single armchair SWNT, where
interaction effects are very pronounced and direct exper-
imental tests of the theory are within reach. However, as
long as the above-mentioned band gaps are negligible, e.g.,
for sufficiently high temperatures, our effective low-energy
Hamiltonian applies to any SWNT, even a chiral one. The
only change arising for n 6= m affects the precise value
of the interaction parameters introduced below. This re-
markable circumstance is due to a U(1) symmetry of the
graphite dispersion relation present close to the Fermi sur-
face. Finally, we mention that by adding a bulk mass term,
the properties of semiconducting or insulating SWNTs
could be analyzed within the same framework [39].

The structure of this paper is as follows. In Section 2
the effective low-energy description of SWNTs is derived.
The resulting fermionic model is bosonized in Section 3. A
renormalization group analysis is carried out in Section 4
and supplemented by the Majorana refermionization ap-
proach described in Section 5. Experimentally relevant
susceptibilities and correlation functions are discussed in
Section 6. In Section 7, we study transport through the
nanotube, followed by a discussion of impurity screening in
Section 8. Finally, some concluding remarks can be found
in Section 9. Throughout this paper, we put ~ = 1.
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Fig. 1. Schematic bandstructure of a metallic SWNT. A right-
and left-moving branch (r = ±) is found near each of the two
Fermi points α = ± corresponding to K and K′, respectively.
Right- and left-movers arise as linear combinations of the sub-
lattices p = ±. The Fermi energy (dashed line) can be tuned
by an external gate.

2 Effective low-energy theory

In this section we derive the effective low-energy descrip-
tion of a single-wall (n, n) carbon nanotube. Our descrip-
tion applies at energy scales where the generic linear dis-
persion relation of a SWNT depicted in Figure 1 is valid.
For a (10, 10) nanotube, the theory therefore holds at
room temperature and below. A similar approach has been
devised previously for the uncorrelated case by Kane and
Mele [31], building on earlier work [40] for graphite in-
tercalation compounds. Here we extend their theory and
include the Coulomb interactions between the electrons.
Previously, this problem has only been investigated us-
ing the perturbative Renormalization Group (RG) for a
weak short-range (Hubbard) interaction [41,42]. However,
there is no external screening of the Coulomb interac-
tion in the SWNT experiments of reference [18], and one
has to take into account the long-ranged character of the
Coulomb interaction potential (see also Ref. [43]). Since
one might employ suitable screening backgates in future
experiments, the general (short- or long-ranged) case of an
arbitrary interaction potential is treated here. The method
used below allows us to get insight into the physics of the
strong-coupling regime emerging at low temperatures.

2.1 Low-energy expansion

The remarkable electronic properties of carbon nanotubes
are due to the special bandstructure of the π electrons
in graphite. The simplest bandstructure calculation starts
from a nearest-neighbor tight-binding Hamiltonian on the
honeycomb lattice, which can be straightforwardly diag-
onalized [25]. Remarkably, the only gapless points of the
resulting dispersion relation are the corner points of the
hexagonal first Brillouin zone. Hence there are only two
linearly independent Fermi points αK with α = ± in-
stead of a continuous Fermi surface. Up to energy scales
≤ 1 eV, the dispersion relation around the Fermi points

is, to a very good approximation, linear,

E±(q = k−K) = ±v|q| , (2.1)

with the same relation around the other Fermi point. The
+ (−) sign corresponds to the conduction (valence) band,
respectively. Obviously, close to the Fermi surface a U(1)
symmetry holds, since the direction of q does not matter
in equation (2.1).

Since the basis of the honeycomb lattice contains two
atoms, there are two sublattices p = ± shifted by the
vector d = (0, d), with the nearest-neighbor C-C distance

d = a/
√

3 = 1.42 Å (here a denotes the honeycomb lat-
tice constant). As a consequence, there are two degenerate
Bloch states

ϕpα(r) = (2πR)−1/2 exp(−iαK.r) (2.2)

at each Fermi point α = ±, where r = (x, y) lives on
the sublattice p under consideration. In equation (2.2),
we have already anticipated the correct normalization for
nanotubes. We follow reference [40] and choose the Bloch
functions separately on each sublattice such that they van-
ish on the other. One can then expand the electron oper-
ator in terms of these Bloch waves (σ = ± is the spin
index),

Ψσ(x, y) =
∑
pα

ϕpα(x, y)Fpασ(x, y) , (2.3)

which introduces slowly varying operators Fpασ(x, y). The
resulting second-quantized effective low-energy theory of
a graphite sheet is given by the 2D massless Dirac Hamil-
tonian [40],

HG = −iv
∑
pp′ασ

∫
drF †pασ(τ · ∇)pp′Fp′ασ , (2.4)

in accordance with the spectrum (2.1). Here τ = (τx, τy)
are standard Pauli matrices.

Wrapping the graphite sheet leads to the generic band-
structure of a metallic SWNT shown in Figure 1. For a
(n, n) armchair SWNT, the Fermi vector is K = (kF , 0)
with kF = 2π/3a. We take the x-axis along the tube di-
rection, and the circumferential variable is 0 < y < 2πR.
The armchair SWNT radius is R =

√
3na/2π, which

yields R = 1.38 nm for a (10, 10) nanotube. Quantiza-
tion of transverse motion now allows for a contribution
exp(imy/R) to the wavefunction. However, excitation of
angular momentum states other than m = 0 costs the en-
ergy ≈ 10 eV/n. In an effective low-energy theory, we may
thus omit all transport bands except m = 0 and hence ar-
rive at a 1D situation with ky = 0. Since also Ky = 0,
the Bloch states (2.2) do not depend on the circumferen-
tial coordinate, and the corresponding wavefunctions are
indeed stiff around the waist of the nanotube.

Instead of the low-energy expansion (2.3), the electron
operator is now written as [31]

Ψσ(x, y) =
∑
pα

ϕpα(x, y)ψpασ(x) , (2.5)
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which introduces 1D fermion operators ψpασ(x) depending
only on the x coordinate. They correspond to the Fpασ
for the graphite sheet. Neglecting Coulomb interactions
for the moment, the Hamiltonian can be read off from
Figure 1,

H0 = −v
∑
pασ

p

∫
dx ψ†pασ∂xψ−pασ . (2.6)

For this expression, we have chosen a preferred direction
in equation (2.4). However, due to the mentioned U(1)
invariance, we can choose any direction without affecting
the resulting low-energy Hamiltonian (we have explicitly
checked that this holds even in the presence of interac-
tions). Switching from the sublattice (p = ±) description
to the right- and left-movers (r = ±) indicated in Fig-
ure 1 implies two copies (α = ±) of massless 1D Dirac
Hamiltonians. By using a suitable gate, one can experi-
mentally tune the average charge density on the nanotube
and hence adjust the Fermi energy. In contrast to the half-
filled band (EF = 0) encountered in 2D graphite sheets,
one is normally off half-filling in SWNT experiments. Typ-
ically, the Fermi energy is displaced by about 300 meV in
the experiment of reference [18]. Finally, to describe semi-
conducting or insulating SWNTs with a band gap ∆E, a
bulk mass term should be added [39],

H ′ =
∆E

2

∫
dx
∑
pασ

ψ†pασψ−pασ . (2.7)

We will put ∆E = 0 in the following, as is appropriate for
armchair nanotubes.

2.2 Coulomb interaction

Let us now examine Coulomb interactions mediated by an
arbitrary potential U(r− r′). The interaction is described
by the Hamiltonian

HI =
1

2

∑
σσ′

∫
dr

∫
dr′ Ψ†σ(r)Ψ†σ′(r

′) (2.8)

× U(r− r′)Ψσ′(r
′)Ψσ(r).

Herein we have assumed that the interaction is not sensi-
tive to the electron spin σ = ±. Bound electrons can be
incorporated in terms of a background dielectric constant
κ, but free charge carriers in nearby gates could lead to
an effectively short-ranged potential.

For the experiments of reference [18], one has an ex-
ternally unscreened Coulomb interaction,

U(r− r′) =
e2/κ√

(x− x′)2 + 4R2 sin2[(y − y′)/2R] + a2
z

,

(2.9)

where az ' 3aB ≈ a (with the Bohr radius aB =
~2/me2 = 0.529 Å) denotes the average distance between

a 2pz electron and the nucleus, i.e., the “thickness” of the
graphite sheet. The dielectric constant in equation (2.9)
can be estimated from the following elementary consider-
ation. In a strictly 1D system of length L with interaction
potential u(x− x′) = e2/κ|x− x′|, the charging energy is

Ec =
1

2L2

∫ L

0

dxdx′ u(x− x′)

' e2 ln(L/R)/κL.

The experimental value Ec = 2.6 meV [18] for L = 3 µm
leads to κ ≈ 1.4. The theoretical estimate κ ≈ 2.4 for bulk
graphite [44] is of the same order of magnitude. Our esti-
mate also includes the effect of the insulating substrate.

The interaction (2.8) can now be reduced to a 1D in-
teraction by inserting the expansion (2.5) for the electron
field operator. The result is

HI =
1

2

∑
pp′σσ′

∑
α1α2α3α4

∫
dxdx′ V pp

′

{αi}
(x− x′)

× ψ†pα1σ(x)ψ†p′α2σ′
(x′)ψp′α3σ′(x

′)ψpα4σ(x), (2.10)

with the 1D interaction potentials

V pp
′

{αi}
(x− x′) =

∫ 2πR

0

dydy′ ϕ∗pα1
(x, y)ϕ∗p′α2

(x′, y′)

× U(x− x′, y − y′ + pdδp,−p′)

× ϕp′α3
(x′, y′)ϕpα4

(x, y). (2.11)

These potentials only depend on x − x′ and on the 1D
fermion quantum numbers. For interactions involving dif-
ferent sublattices for r and r′ in equation (2.8), i.e., p 6= p′,
one needs to take into account the shift vector d = (0, d),
see equation (2.11).

To simplify the resulting 1D interaction (2.10), we now
exploit momentum conservation. Since an additional gate
voltage tunes the average electron density on the SWNT,
we assume that no lattice instabilities due to Umklapp
scattering are present, i.e., one stays off half-filling. This
assumption does not limit the applicability of our ap-
proach, but simplifies matters considerably. For a recent
study of Umklapp processes in SWNTs, see reference [42].
We then employ the Fermi point quantum numbers αi to
classify the allowed processes, see Figure 2. First, there
are “forward scattering” (αFS) processes, where α1 = α4

and α2 = α3. Second, we have “backscattering” (αBS),
with α1 = −α2 = α3 = −α4. Notice that the above classi-
fication differs from the conventional one for the standard
two-chain problem [23]. The latter is based on the right-
and left-moving indices (r = ± or p = ±) rather than on
the different Fermi points of the nanotube (α = ±).

2.3 Forward scattering

Let us start with αFS, where α1 = α4 and α2 = α3.
The corresponding diagram is shown in Figure 2. We first
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Fig. 2. Allowed interaction processes away from half-filling.
(a) Forward Scattering (αFS). The incoming 1D fermions do
not change their quantum numbers p,α, σ during the scatter-
ing event. (b) Backward Scattering (αBS). One 1D fermion is
scattered from Fermi point α to the opposite Fermi point −α,
with the other being scattered from −α to α. Straight lines
denote 1D fermion propagators, dashed lines the effective 1D
Coulomb interaction.

define the potential

V0(x− x′) =

∫ 2πR

0

dy

2πR

∫ 2πR

0

dy′

2πR
U(r− r′). (2.12)

This gives from equations (2.11, 2.2) the {αi}-independent
forward scattering interaction potential

V pp
′

αFS(x)=V0(x) + δp,−p′δVp(x), (2.13)

with the correction term

δVp(x)=

∫ 2πR

0

dydy′

(2πR)2
[U(x, y − y′ + pd)− U(x, y − y′)],

(2.14)

which is only present if r and r′ are located on differ-
ent sublattices. Thereby important information about the
discrete nature of the graphite network is retained despite
the low-energy continuum approximation employed in our
formulation. The correction δVp is a direct measure of the
difference between intra- and inter-sublattice interactions.
Because of the periodicity of the y-integrals, Taylor ex-
panding equation (2.14) in powers of d implies that the

correction δVp(x) = 0. Since V0(x) treats both sublattices
on equal footing, the resulting αFS interaction couples
only the total electron densities,

H
(0)
αFS =

1

2

∫
dxdx′ ρ(x)V0(x− x′)ρ(x′), (2.15)

where the 1D density is defined as

ρ(x) =
∑
pασ

ψ†pασ(x)ψpασ(x). (2.16)

This density does not contain “fast” terms arising from a
mixture of the different (pασ)-type fermions. Such terms
turn out to be crucial for an understanding of the Friedel
oscillation in Section 8.

For the unscreened Coulomb interaction (2.9), the po-
tential (2.12) becomes

V0(x) =
2e2

κπ
√
a2
z + x2 + 4R2

K

(
2R√

a2
z + x2 + 4R2

)
,

(2.17)

with the complete elliptic integral K(z) of the first
kind [45]. For x � R, one finds V0(x) ∼ 1/x again. The

Fourier transform Ṽ0(k) = Ṽ0(−k) can be expressed in
terms of the modified Bessel function K0(z) [46],

Ṽ0(k) =
4e2

κπ

∫ π/2

0

dϕK0

(
k

√
a2
z + 4R2 sin2 ϕ

)
. (2.18)

Using asymptotic properties of K0(z), we then find the
long-wavelength form valid for kR� 1,

Ṽ0(k) =
2e2

κ
(| ln kR|+ c0), (2.19)

where c0 = −γ + (π/2) ln 2 ' 0.51 with Euler’s constant
γ. The logarithmic singularity at small wavevectors is a
direct consequence of the long-range tail of V0(x).

If one starts instead from an on-site Hubbard interac-
tion [41,42],

U(r− r′) = Uδσ,−σ′δpp′δ(r− r′) (2.20)

one finds from equation (2.12) the 1D forward scattering
potential

V0(x) =
U

2πR
δσ,−σ′δ(x− x

′). (2.21)

The characteristic 1/R scaling of the effective 1D interac-
tion has also been found in reference [42].

For |x − x′| � a, our continuum calculation leading
to δVp(x − x′) = 0 is justified. However, for |x− x′| ≤ a,
one has to be more careful. Here an additional αFS term
beyond equation (2.15) arises due to the hard core of the
Coulomb interaction. To study this term, we put x = x′

and evaluate δVp(0) directly on the wrapped graphite net-
work shown in Figure 3. For simplicity, we again consider
an armchair SWNT, albeit the same result (see Eq. (2.23)
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2d

d
Fig. 3. Microscopic arrangement of carbon atoms around the
waist of an armchair SWNT (shown for n = 4). Circles and
crosses denote the two distinct sublattices p = ±, and d =
a/
√

3.

below) is found for other nanotube geometries. We now
write

δVp(x− x
′) ' −2fpδ(x− x

′), (2.22)

and since fp = f−p = f (see below), we obtain the addi-
tional αFS contribution in the form

H
(1)
αFS = −f

∫
dx

∑
pαα′σσ′

ψ†pασψ
†
−pα′σ′ψ−pα′σ′ψpασ.

(2.23)

The coupling constant f > 0 depends on the nanotube
geometry only and is evaluated for the (n, n) case next.

To calculate δVp(0) on the wrapped graphite lattice, we
start from the microscopic arrangement of carbon atoms
around the waist of the armchair SWNT, see Figure 3. On
the length scale |y−y′| ≤ 2πR, it is always justified to use
the externally unscreened Coulomb interaction potential
(2.9). Denoting the locations of carbon atoms on sublat-
tice p = + (the circles in Fig. 3) as yk = 2π(k/n)R = 3kd
with k = 1, . . . , n, and discretizing equation (2.14), we
obtain from equation (2.22)

2fp/a = (3d/2πR)2
n∑

l,k=1

{
U(0, yl − yk)

− U(0, yl − yk + pd)

}
.

The summation extends over the p = + sites only, and
inserting equation (2.9) yields with R =

√
3na/2π,

2fp/a =
e2

2n2κR

∑
l,k

{
1√

sin2[(l − k)π/n] + (az/2R)2

−
1√

sin2[(l − k + p/3)π/n] + (az/2R)2

}
.

(2.24)

The singular contributions are picked up from l = k and
l = n− k and yield the p-independent contribution

f/a = γf e
2/R, (2.25)

with the order-of-magnitude estimate

γf =

√
3a

2πκaz

[
1−

1√
1 + a2/3a2

z

]
≈ 0.05.

It can be checked easily that the remaining terms in the
summation (2.24) are negligible against the singular con-
tribution leading to equation (2.25). The prefactor γf is
independent of n such that f ∼ 1/n. Parenthetically, in
the language of the Hubbard-like models employed in ref-
erences [41,42], we have f/a = U−V , where U ≈ e2/R is
the on-site and V the nearest-neighbor Coulomb interac-
tion. According to equation (2.25), this difference is small
compared to U . Using a strictly on-site Hubbard model
(V = 0) is therefore never realistic, even in the presence
of close-by screening gates.

2.4 Backward scattering

Let us now discuss the αBS contributions depicted in
Figure 2. For backscattering processes, we have α1 =
−α2 = α3 = −α4 = α in equation (2.10), and from equa-
tion (2.11) the corresponding 1D interaction potential for
αBS processes reads

V pp
′

α (x− x′) = e2iαkF (x−x′) V pp
′

αFS(x− x′). (2.26)

Because of the rapidly oscillating phase factor, the only
non-vanishing contribution to HαBS comes from |x−x′| ≤
a, i.e., we can effectively take a local interaction. Accord-
ing to equation (2.10), the αBS contribution must then be
of the general form

HαBS=
1

2

∫
dx

∑
pp′ασσ′

(b+ pp′b′)ψ†pασψ
†
p′−ασ′ψp′ασ′ψp−ασ.

The term corresponding to b′ is irrelevant [47] and is omit-
ted in what follows. The effective coupling constant b > 0
is then determined by the Fourier transform of V0(x) at
k = 2kF ,

b = Ṽ0(2kF ), (2.27)

and the backscattering contribution is

HαBS =
b

2

∫
dx

∑
pp′ασσ′

ψ†pασψ
†
p′−ασ′ψp′ασ′ψp−ασ. (2.28)

For the unscreened interaction (2.9), using 2kFR =
2n/
√

3� 1 and asymptotic properties of the Bessel func-
tion, we obtain from equation (2.18)

b/a = γb e
2/R, (2.29)

with the order-of-magnitude estimate

γb ≈
3

2π2κ
≈ 0.1.
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The prefactor γb is independent of n, and thus b ∼ 1/n.
This calculation for unscreened interactions predicts b ≈
f . If the Coulomb interaction is externally screened, how-
ever, a qualitatively different situation can arise. Now f
is still given by equation (2.25), but b can become signifi-
cantly larger, see equation (2.27). Therefore it is possible
to have b� f in the presence of screening gates.

3 Bosonization

According to Section 2, the low-energy theory of armchair
SWNTs away from lattice commensurabilities is described
by the Hamiltonian

H = H0 +H
(0)
αFS +H

(1)
αFS +HαBS . (3.1)

This model is equivalent to two spin- 1
2 fermion chains cou-

pled in a rather special way by the interactions, but with-
out interchain single-particle hopping. As described be-
low, it is in that respect that our theory differs from the
standard two-chain problem of coupled Luttinger liquids
investigated, e.g., in references [48–54]. The standard two-
chain model is usually derived by coupling two Hubbard
chains via a transverse hopping matrix element [55], and
has been used to study, e.g., the stability of Luttinger liq-
uid behavior with respect to interchain coupling [56–58].
In contrast, the modified model (3.1) describes the prop-
erties of a SWNT. Our solution of this model proceeds
in fact quite similar to the standard two-chain case. In
particular, we now follow the bosonization route taken in
references [49–51] and especially in reference [52]. For a
general review of bosonization, see reference [23].

In order to proceed, we need to bring the non-
interacting Hamiltonian (2.6) into a standard form of the
1D Dirac model. This is accomplished by switching to
right- and left-movers (r = ±) which are linear combi-
nations of the sublattice states p = ±. In particular, we
have

ψpασ(x) =
∑
r

Ũprψ̃rασ(x), (3.2)

where the unitary operator Ũ fulfills Ũ†σyŨ = σz . Since

the indices of Ũ are p = ± and r = ±, the 2 × 2 matrix

representation Ũ = (1/
√

2)[(1, i), (1,−i)] is easily found.
The non-interacting Hamiltonian (2.6) then reads

H0 = −iv
∑
rασ

r

∫
dx ψ̃†rασ∂xψ̃rασ. (3.3)

Furthermore, the 1D density operator ρpασ(x) entering
equation (2.16) becomes

ρpασ = ψ†pασψpασ =
1

2

∑
r=±

(
ρ̃rασ + pψ̃†rασψ̃−rασ

)
, (3.4)

where ρ̃rασ(x) = ψ̃†rασ(x)ψ̃rασ(x). The 1D density defined
in equation (2.16) is therefore equivalently expressed as

ρ(x) =
∑
rασ

ψ̃†rασ(x)ψ̃rασ(x). (3.5)

In this representation, it is convenient to apply the
bosonization formula [23],

ψ̃rασ(x) =
ηrασ√

2πa
exp {iqF rx+ ikFαx+ iϕrασ} . (3.6)

For simplicity, we have incorporated the spatial depen-
dence due to the Bloch functions (2.2) into the 1D fermion
operator. The chiral bosonic phase fields obey the commu-
tator algebra

[ϕrασ(x), ϕr′α′σ′(x
′)]− = −iπrδrr′δαα′δσσ′ sgn(x− x′).

(3.7)

From these relations, the fermion operator ψ̃rασ(x) has
indeed the correct anticommutator algebra on a given
branch (rασ). To enforce anticommutator relations be-
tween different branches, we need the Majorana fermions
(Klein factors) ηrασ = η†rασ. They obey

[ηrασ, ηr′α′σ′ ]+ = 2δrr′δαα′δσσ′ . (3.8)

We note that the usual zero modes [23] have to be incor-
porated in the fields ϕrασ as they are not contained in the
Majorana fermions. However, they matter only if one is in-
terested in finite-size effects. Finally, from equation (3.6),
the density ρ̃rασ now takes the form

ρ̃rασ(x) =
qF

2π
+

r

2π
∂xϕrασ(x).

The wave vector qF , which must be carefully distinguished
from the Fermi vector kF , is related to the band filling. By
varying a suitable gate voltage [18], one can easily adjust
the Fermi energy and hence the band filling (see Fig. 1).
Relative to the unbiased half-filled case EF = 0, an aver-
age excess density δρ gives rise to a non-zero qF = πδρ/4
and hence EF = vqF . We consider |qF | � kF in the fol-
lowing, since otherwise the low-energy continuum approx-
imation underlying our approach might break down.

At this stage, it is natural to introduce the standard
linear combinations θjδ(x) and their dual fields φjδ(x) sub-
ject to the algebra

[φjδ(x), θj′δ′(x
′)] = −(i/2)δjj′δδδ′ sgn(x− x′). (3.9)

The bosonic phase fields θjδ(x) for the total and relative
(δ = ±) charge (j = c) and spin (j = s) channels are
constructed as

θc+ =
1

4
√
π

∑
rασ

r ϕrασ,

θc− =
1

4
√
π

∑
rασ

rαϕrασ,

θs+ =
1

4
√
π

∑
rασ

rσ ϕrασ,

θs− =
1

4
√
π

∑
rασ

rασ ϕrασ.
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Their dual fields φjδ are defined similarly by omitting the
r factor in these relations. The back-transformation reads

ϕrασ =

√
π

2

{
φc+ + r θc+ + αφc− + rα θc−

+ σ φs+ + rσ θs+ + ασ φs− + rασ θs−

}
, (3.10)

such that equation (3.7) is recovered from equation (3.9).
The total electron density relative to the half-filled situa-
tion reads from equation (3.5)

ρ(x) = 4qF /π +
2
√
π
∂xθc+(x), (3.11)

and the continuity equation then yields the current,

I =
2e
√
π
∂tθc+(x, t), (3.12)

which can be evaluated, say, at x = 0.

In order to arrive at the bosonized form of the model
(3.1), we need to specify the Majorana fermions ηrασ in
equation (3.6). Since the Hamiltonian contains only the
spin-conserving products

A±± = ηrαση±r±ασ, (3.13)

these can be represented using standard Pauli matri-
ces [24,59]. Besides A++ = 1, we choose

A+− = iασx, A−+ = irασz , A−− = −irσy. (3.14)

To show that equation (3.14) leads to a valid representa-
tion for the Klein factors, we have to check all possible
products of A±± with each other. For instance, the prod-
uct

A+−A−+ = ηrασηr−ασηrαση−rασ (3.15)

gives (iασx)(irασz) = irσy according to equation (3.14).
On the other hand, using the anticommutator relation
(3.8) gives for equation (3.15) −ηr−αση−rασ, which is
again irσy from equation (3.14). Similarly, all other prod-
ucts are consistent with the algebra (3.8), and one can
indeed use the representation (3.13) with equation (3.14).
Of course, our choice (3.14) is not unique, and one can find
other possibilities. However, final expressions for physi-
cally observable quantities do not depend on this choice.

The bosonized expressions for the various terms in
equation (3.1) read [60]

H0 =
∑
jδ

vjδ

2

∫
dx
[
Kjδ(∂xφjδ)

2 +K−1
jδ (∂xθjδ)

2
]

(3.16)

H
(0)
αFS =

2

π

∫
dxdx′ ∂xθc+(x)V0(x− x′)∂x′θc+(x′) (3.17)

H
(1)
αFS =

f

(πa)2

∫
dx [− cos(

√
4π θc−) cos(

√
4π θs−)

− cos(
√

4π θc−) cos(
√

4π θs+)

+ cos(
√

4π θs+) cos(
√

4π θs−)] (3.18)

HαBS =
b

(πa)2

∫
dx [cos(

√
4π θc−) cos(

√
4π θs−)

+ cos(
√

4π θc−) cos(
√

4π φs−)

+ cos(
√

4π θs−) cos(
√

4π φs−)]. (3.19)

The correct signs for the various terms in equations (3.18,
3.19) are crucial and necessitate a correct choice for the
Majorana fermion products, see equation (3.14). Although
bosonization of equation (3.3) gives Kjδ = 1 in equa-
tion (3.16), interactions renormalize these parameters. In

particular, in the long-wavelength limit, H
(0)
αFS can be in-

corporated into H0 by putting

Kc+ = K =
(

1 + 4Ṽ0(k ' 0)/πv
)−1/2

≤ 1, (3.20)

while for all other channels [(jδ) 6= (c+)], the coupling
constant f gives rise to the renormalization

Kjδ = 1 + f/πv ≥ 1. (3.21)

The corresponding renormalization of Kc+ due to f 6= 0
can be neglected against the large effect of equation (3.17).
The velocities of the different modes in equation (3.16) are
then given by

vjδ = v/Kjδ. (3.22)

Clearly, the charged (c+) mode propagates with signifi-
cantly higher velocity than the three neutral modes. There
is a further renormalization of the values given by equa-
tion (3.22) due to the αBS contribution. However, this
effect is very small and does not affect the power laws dis-
cussed below. We shall therefore neglect velocity renor-
malizations beyond equation (3.22) in the following.

For the long-ranged interaction (2.19), the logarithmic
singularity in equation (3.20) has a natural infrared cutoff
at k = 2π/L due to the finite length of the nanotube.
For temperatures kBT � ~v/L, thermal effects provide
a higher cut-off. Considering low temperatures, kBT �
~v/L, we then obtain

K =

(
1 +

8e2

πκ~v
[ln(L/2πR) + 0.51]

)−1/2

, (3.23)
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which predicts K → 0 for L → ∞. Since ~c/e2 ' 137,
we get with v = 8 × 105 m/s the estimate e2/~v =
(e2/~c)(c/v) ≈ 2.7, and therefore K ' 0.18 for the
L = 3 µm tube of reference [18]. Quite generally, the
parameter K gives the appropriate measure of the cor-
relation strength [22,23]. The rather small value of K
found here implies that a single-wall armchair nanotube
is a very strongly correlated system, which should display
pronounced non-Fermi liquid effects.

4 Renormalization group analysis

The Hamiltonian given by equations (3.16–3.19) does not
allow for an exact solution. To proceed, we investigate
the nonlinear terms associated with the coupling con-
stants f and b by using the perturbative RG method [61].
Since there is no renormalization in the charged (c+) sec-
tor, in the following (jδ) includes only the combinations
(c−), (s+), and (s−). There are eight scaling operators
perturbing the critical b = f = 0 model that need to be
taken into account. They are given by

V1 =
1

π
cos(
√

4πθc−) cos(
√

4πθs−), (4.1)

V2 =
1

π
cos(
√

4πθc−) cos(
√

4πθs+), (4.2)

V3 =
1

π
cos(
√

4πθs−) cos(
√

4πθs+), (4.3)

V4 =
1

π
cos(
√

4πθc−) cos(
√

4πφs−), (4.4)

V5 =
1

π
cos(
√

4πθs+) cos(
√

4πφs−), (4.5)

Vjδ =
1

2

[
−(∂xφjδ)

2 + (∂xθjδ)
2
]
, (4.6)

with associated scaling fields (coupling constants) gi(`)
(where i = 1, . . . , 5) and gjδ(`). Here d` = −d lnωc de-
notes the standard RG flow parameter, i.e., one decreases
the high-energy bandwidth cutoff ωc and compensates this
decrease by adjusting the coupling constants. Within the
reach of the perturbative RG, the coupling constants gjδ
are related to the Kjδ parameters by Kjδ = 1− 2gjδ. The
initial values of the coupling constants are

g1(0) = (b− f)/πv,

g2(0) = −g3(0) = 2gjδ(0) = −f/πv,

g4(0) = b/πv,

g5(0) = 0.

The operator V5 is not present in the original Hamiltonian
but will be generated during the renormalization process.
Furthermore, we have omitted the operator

V ′ =
1

π
cos(
√

4πθs−) cos(
√

4πφs−),

which is present in equation (3.19). This operator stays
exactly marginal in all orders and thus decouples com-
pletely from the problem. In fact, by using the Majorana

refermionization procedure in Section 5, this term is seen
to vanish.

It is straightforward to derive the second-order RG
equations, e.g., by using poor man’s scaling or, more el-
egantly, the operator product expansion technique [61].
The resulting equations read

dg1

d`
= −g2g3 + g1(gc− + gs−), (4.7)

dg2

d`
= −g1g3 − g4g5 + g2(gc− + gs+), (4.8)

dg3

d`
= −g1g2 + g3(gs+ + gs−), (4.9)

dg4

d`
= −g2g5 + g4(gc− − gs−), (4.10)

dg5

d`
= −g2g4 + g5(gs+ − gs−), (4.11)

dgc−

d`
=

1

2
(g2

1 + g2
2 + g2

4), (4.12)

dgs+

d`
=

1

2
(g2

2 + g2
3 + g2

5), (4.13)

dgs−

d`
=

1

2
(g2

1 + g2
3 − g

2
4 − g

2
5). (4.14)

We shall first study these equations in two limiting cases,
namely either b = 0 or f = 0.

Let us start with the case b = 0, where the coupling
constants g4 and g5 stay identically zero. Putting

G = −g1 = −g2 = g3

with the initial condition G(0) = f/πv > 0, and

Ḡ = 2gc− = 2gs− = 2gs+

with Ḡ(0) = −f/πv < 0, the RG equations read

dG

d`
= −G2 + ḠG,

dḠ

d`
= 2G2.

This permits the solution G = −Ḡ obeying dG/d` =
−2G2. Since G(0) > 0, all coupling constants flow to zero
as `→∞,

G(`) =
G(0)

1 + 2G(0)`
·

Therefore, for b = 0, the contribution H
(1)
αFS in equa-

tion (3.18) is marginally irrelevant.
Next we turn to the case f = 0, where one can imme-

diately put g2 = g3 = g5 = gs+ = 0. Furthermore, we are
free to choose the isotropic solution

g = g1 = g4,

with the initial condition g(0) = b/πv > 0. Then one can
also put gs− = 0 and is left with the Kosterlitz-Thouless
equations

dg

d`
= ggc−,

dgc−

d`
= g2. (4.15)
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Fig. 4. RG flow of the coupling constants for f = 0.025 and
b = 0.05. Units are such that a = 1. Following equations (2.25,
2.29), these initial values apply to a (10, 10) SWNT with ex-
ternally unscreened Coulomb interactions.

Therefore both g and gc− will flow to strong coupling,
and the backscattering part HαBS is marginally relevant.
The physical picture emerging for the special case f =
0 is elucidated in Section 5. From this analysis and the
numerical solution of the general RG equations (4.7–4.14)
for f 6= 0, it is apparent that b is always a marginally
relevant coupling constant.

The next question to be addressed is whether the ini-

tially irrelevant H
(1)
αFS becomes relevant near the emerging

strong coupling fixed point. To study this issue, let us as-
sume b� f and linearize the RG equations in the initially
small coupling constants g2, g3, g5, and gjδ. Then gs+ de-
couples, and we introduce the new coupling constants

g = (g1 + g4)/2, ḡ = g1 − g4,

with initial values g(0) = b/πv and ḡ(0) = −f/πv.
Thereby we recover the Kosterlitz-Thouless equations
(4.15), so that the above strong-coupling behavior of b is
basically unaltered, i.e., the coupling constants g and gc−
flow to strong coupling, g → g∗ > 0 and Kc− → K∗c− < 1.
The remaining RG equations read

dḡ

d`
= 2ggs−,

dg2

d`
= −g(g3 + g5),

dg3

d`
=
dg5

d`
= −gg2,

dgs−

d`
= ḡg.

Therefore, ḡ(`) also reaches the strong coupling regime,
ḡ → ḡ∗ < 0, and similarly, Ks− → K∗s− > 1. Furthermore,
it follows readily that g2, g3 and g5 flow to strong coupling
(with g3 − g5 staying constant). We conclude that terms
associated with the coupling constant f will become rele-
vant near the strong-coupling point b → b∗, which there-
fore represents only an intermediate fixed point.

This conclusion remains valid if the assumption b� f
is relaxed. In Figure 4, the numerical integration of the
RG flow equations (4.7–4.14) is shown for realistic values

0 50 100

-0.025

0

0.025

Fig. 5. Same as Figure 4, for f = 0.05 and b = 0.025.

of the coupling constants b and f . Clearly, all coupling
constants go to the strong-coupling regime, albeit g4 asso-
ciated with the backscattering contribution is dominant.
Only at sufficiently low energy scales, i.e., for large values
of the flow parameter `, the nonlinear forward scatter-

ing term H
(1)
αFS becomes important. Finally, in Figure 5

we show the RG flow for different initial conditions cor-
responding to f > b. The coupling constants g2 and g3

associated with the forward scattering contribution are
initially irrelevant. However, they eventually become rel-
evant and flow to strong coupling as ` → ∞. In the end,
all coupling constants flow into the strong-coupling regime
again.

5 Majorana refermionization

We start this section by presenting a solution for the
special case f = 0. This solution proceeds by Majorana
refermionization and is similar to the one discussed by
Schulz in the context of the standard two-chain prob-
lem [52]. For f = 0, the nonlinearity affects only the rel-
ative (δ = −) channels, for which the bosonized Hamilto-
nian reads from equations (3.16, 3.19)

H(c−, s−) =
v

2

∫
dx
∑
j=c,s

[
(∂xφj−)2 + (∂xθj−)2

]
+

b

(πa)2

∫
dx [cos(

√
4π θc−) cos(

√
4π θs−)

+ cos(
√

4π θc−) cos(
√

4π φs−)

+ cos(
√

4π θs−) cos(
√

4π φs−)]. (5.1)

Let us define new effective fermion operators for the rela-
tive charge and spin (j = c, s) channels. Their right- and
left-moving components (p = ± = R,L) can be written in
terms of the bosonic phase fields,

ψjp =
ηjp√
2πa

exp(−i
√
π(pθj− + φj−)).

Then we have

cos[
√

4πθj−] =− ηjRηjL πa
(
ψ†jRψjL − ψ

†
jLψjR

)
,

cos[
√

4πφj−] =− ηjRηjL πa
(
ψ†jRψ

†
jL − ψjLψjR

)
. (5.2)
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Next we express these two (complex) Dirac fermions in
terms of four (real) Majorana fermions ξjp(x). Here j =
1, 2 corresponds to the (s−) channel, and j = 3, 4 to (c−),

ψs,R/L =
1
√

2

(
ξ1,R/L(x) + iξ2,R/L(x)

)
,

ψc,R/L =
1
√

2

(
ξ3,R/L(x) + iξ4,R/L(x)

)
.

The Majorana fermion operators obey the algebra

[ξjp(x), ξj′p′(x
′)]+ = δjj′δpp′δ(x− x

′), (5.3)

and by using equation (5.2) we find

cos[
√

4πθs−] =− iπa (ξ1Rξ1L + ξ2Rξ2L) ,

cos[
√

4πφs−] =− iπa (ξ1Rξ1L − ξ2Rξ2L) ,

cos[
√

4πθc−] =iπa (ξ3Rξ3L + ξ4Rξ4L) , (5.4)

where the Klein factors have been chosen as ηcRηcL =
−ηsRηsL = −i. This choice is dictated by the condition
that the interaction term is marginally relevant, see below.

As already mentioned, one can see from this represen-
tation that the operator

cos[
√

4πθs−] cos[
√

4πφs−]

can effectively be put to zero. To be precise, upon point
splitting [23,61], it yields highly irrelevant operators in-
volving spatial derivatives of the Majorana fields. The
corresponding term in equation (5.1) can thus be omit-
ted. Refermionization then yields (we put v = 1 in the
intermediate steps)

H(c−, s−) =−
i

2

4∑
j=1

∫
dx (ξjR∂xξjR − ξjL∂xξjL)

+ 2b

∫
dx (ξ3Rξ3L + ξ4Rξ4L) ξ1Rξ1L. (5.5)

In order to better understand the above model, it is in-
structive to rewrite it in terms of the following current
operators,

IxR(x) = iξ1R(x)ξ3R(x),

IyR(x) = −iξ1R(x)ξ4R(x),

IzR(x) = iξ3R(x)ξ4R(x), (5.6)

and analogously for the left-movers. These currents obey
the SU(2) level-2 Kac-Moody algebra [23],

[Ia(x), Ib(y)]− = iεabcδ(x− y)Ic(x) +
iδab

2π
δ′(x− y).

(5.7)

In terms of the operators (5.6), the interacting part of the
Hamiltonian (5.5) takes the form∫

dx
(
g⊥ [IxR(x)IxL(x) + IyR(x)IyL(x)] + gzI

z
R(x)IzL(x)

)
.

The transverse coupling is g⊥ = 2b, while the longitudinal
coupling gz is initially absent but will be generated under
the renormalization. We thus can identify the model (5.5)
as the SU2(2) anisotropic Wess-Zumino-Witten model,
see, e.g. [23]. From the structure of the commutation rela-
tions, it immediately follows that the coupling constants
(g⊥, gz) obey the Kosterlitz-Thouless equations

dg⊥

d`
=

1

2π
g⊥gz,

dgz

d`
=

1

2π
g2
⊥. (5.8)

Using the operator identity(
1

πa
cos[
√

4πθ(x)]

)2

=
1

(πa)2
cos[
√

16πθ(x)]

−
1

π
(∂xθ)

2 + const, (5.9)

we conclude that the longitudinal coupling corresponds
to a renormalization of Kc−, with gz = 2πgc−. Using
this identification we recover the flow equations (4.15)
and highlight the underlying reason for their Kosterlitz-
Thouless structure.

Of course, for b > 0, the model flows to strong cou-
pling, rendering the Majorana fields ξ1, ξ3 and ξ4 massive.
Notice, however, that the Majorana fermion ξ2 stays mass-
less, so that the (s−) sector carries one massive (j = 1)
and one massless branch. This behavior is due to the sym-
metric appearance of the dual fields θs− and φs− (self-
duality) in equation (5.1). By virtue of the Heisenberg
uncertainty relation, it is impossible to completely pin a
self-dual field. However, the (c−) sector is fully massive.

The masses of the massive branches can now safely be
calculated by Majorana mean-field theory. We mention
in passing that a standard self-consistent harmonic treat-
ment [23] does not apply in this case since we have to deal
with a marginally relevant perturbation. In the mean-field
approximation, the interaction term in equation (5.5) is
written as

−2ib

∫
dx (c1 [ξ3Rξ3L + ξ4Rξ4L] + 2c3 ξ1Rξ1L) , (5.10)

with the ground-state averages

c1 = i〈ξ1Rξ1L〉,

c3 = c4 = i〈ξ3Rξ3L〉 = i〈ξ4Rξ4L〉.

At this point it is straightforward to diagonalize the mean-
field Hamiltonian. This yields the self-consistency rela-
tions

c1 =
2bc3
π

ln(ωc/4bc3),

c3 =
bc1

π
ln(ωc/2bc1),

where ωc = 7.4 eV is the bandwidth of the π electrons [3].
The solution to these relations is c3 ' c1/

√
2 with

c1 '
ωc

2b
exp[−π/

√
2b].
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Comparing equation (5.10) with the usual mass term
−im

∫
dxξRξL yields the masses mj of the massive Ma-

jorana fermion branches j = 1, 3, 4. Apart from a factor√
2, these masses are all equal and given by

mb = ωc exp[−πv/
√

2b]. (5.11)

Since the coupling constant b appears in the exponent of
an exponentially small quantity, it is quite difficult to esti-
mate the value of mb. Taking the value (2.29) for b yields
an order-of-magnitude estimate for the associated temper-
ature scale, Tb ≈ 0.1 mK. For well-screened interactions,
however, Tb can be orders of magnitude larger.

To proceed, since the (c−) sector is fully massive, we
now effectively put θc− = 0 in equation (5.1). Other de-
generate solutions give the same physical results. Then we
are confronted with the interaction Hamiltonian

mb

2πa

∫
dx
(

cos[
√

4πθs−] + cos[
√

4πφs−]
)
.

Self-duality implies that sin[
√
πθs−] and sin[

√
πφs−] must

have the same scaling dimension. Similarly, the scaling
dimensions of cos[

√
πθs−] and cos[

√
πφs−] must coincide.

Although the fields θs− and φs− are not pinned, they still
have a tendency to be pinned. Since mb > 0, this implies
that the values of sin[

√
πθs−] and sin[

√
πφs−] are close to

1, while the corresponding cos-operators approach zero.
Therefore the sin-operators will be correlated stronger
than the cos-operators.

These simple arguments can be made quantitative as
follows. The (s−) sector is described by two decoupled
Hamiltonians, H = H1[ξ1] + H2[ξ2], for the Majorana
fermions ξ1 and ξ2,

Hj [ξj ] =−
i

2

∫
dx (ξjR∂xξjR − ξjL∂xξjL)

− imj

∫
dx ξjRξjL, (5.12)

where the masses are given by m1 = mb and m2 = 0. We
now exploit the well-known correspondence between the
2D classical Ising model and 1D Majorana fermions [23,
62]. The fermion mass mj sets the relevant energy scale,
where the correlation length of the related Ising model
should be proportional to mj . Therefore the Ising model
related to ξ2 will be critical (T = Tc), while the Ising
model for ξ1 is above criticality (since m1 > 0, we have
T > Tc). Denoting the standard order operators for the
two Ising models as σ1,2, and disorder operators as µ1,2,
the fusion rules [23,62] yield the correspondence

cos[
√
πθs−] = σ1µ2,

cos[
√
πφs−] = σ1σ2,

sin[
√
πθs−] = µ1σ2,

sin[
√
πφs−] = µ1µ2. (5.13)

These fusion rules state that for two given Ising models,
products of the order/disorder operators determine the
Majorana field operators, which in turn are composed out

of the exponentials exp[±i
√
πθs−] and exp[±i

√
πφs−]. The

relation (5.13) is a valid representation of the fusion rules,
see reference [23].

Since the first Ising model is above criticality, the av-
erage of the order operator is zero, 〈σ1〉 = 0. However,
the disorder operator µ1 has a finite average value, and
correlation functions of cos[

√
πθs−] and cos[

√
πφs−] de-

cay exponentially. From the exact solution of the 2D Ising
model [62] one then immediately obtains

〈sin[
√
πθs−(x)] sin[

√
πθs−(x′)]〉 ∼ |x− x′|−1/4, (5.14)

with the same result for the sin[
√
πφs−] correlator. The

sin-operators therefore contain the Ising operator µ1 from
the off-critical model which has a finite average. The other
Ising operator then comes from a critical model (m2 = 0)
and leads to the scaling dimension η = 1/8, see equa-
tion (5.14). In contrast, the cos-operators contain the Ising
operator σ1 with zero expectation value. Note that for
b = 0 all these operators have scaling dimension η = 1/4.
The “halved” scaling dimension η = 1/8 found for b > 0
can be traced to the fact that one Majorana fermion be-
comes massive while the other stays massless. In the (c−)
sector, correlations of cos[

√
πθc−] show long-range order

while all other operators lead to exponential decay.
The results obtained so far by Majorana refermioniza-

tion apply only to the intermediate fixed point character-

ized by f = 0. As discussed in Section 4, while H
(1)
αFS

is irrelevant around the non-interacting fixed point, it
becomes relevant near this intermediate strong-coupling
point. The term ∼ cos(

√
4πθs+) cos(

√
4πθs−) in equa-

tion (3.18) stays marginal, but the two other terms be-
come relevant with scaling dimension η = 1. This renders
the (s+) channel massive. Regarding the (s−) channel, the

most important contribution due to H
(1)
αFS comes from

H
(1)
αFS ' −

f

(πa)2

∫
dx cos[

√
4πθc−] cos[

√
4πθs−].

Noting that we have chosen θc− = 0, we can again employ
Majorana refermionization. The only but important effect
of this contribution then consists of a renormalization of
the masses m1,2,

m1 → (mb −mf ), m2 → mf ,

which breaks the self-duality in the (s−) sector and thus
drives the second Ising model off criticality as well. Majo-
rana mean-field theory yields

mf ' (f/b)mb, (5.15)

and the associated temperature scale Tf ≈ (f/b)Tb.
Therefore both the Majorana fermion ξ2 and the (s+)
field acquire the (generally small) mass mf due to the
forward scattering contribution. At the emerging T = 0
strong-coupling fixed point, we have long-range order in
the operators

cos[
√
πθs+], cos[

√
πθc−], sin[

√
πφs−], (5.16)
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with exponential decay in all other operators except those
of the critical (c+) sector. That the first two operators be-
come long-ranged is a direct consequence of the pinning
condition θc− = 0. That sin[

√
πφs−] exhibits long-range

order can be easily understood from equation (5.13), since
the second Ising model is now also above criticality. There-
fore both 〈µ1〉 and 〈µ2〉 are finite, but 〈σ1〉 = 〈σ2〉 = 0.

This analysis for a general interaction potential pre-
dicts that the exponents corresponding to the first (inter-
mediate) strong-coupling point should be observable on
temperature scales Tf < T < Tb, with a crossover to a
regime T < Tf dominated by the true T = 0 fixed point.
For long-ranged interactions, we have Tf ≈ Tb, and the
intermediate fixed point and the associated crossover phe-
nomenon are not observable. However, for screened inter-
actions, Tb can be significantly larger than Tf . Finally, in
the regime T > Tb, which also includes the temperature
range experimentally studied in reference [18], the physi-
cal behavior emerging from our analysis is best character-
ized as that of a Luttinger liquid with an additional flavor
index. In this regime it is justified to neglect the nonlin-
earities associated with the coupling constants b and f .
Nanotubes therefore constitute a realization of the Lut-
tinger liquid at sufficiently high temperatures.

6 Susceptibilities and correlation functions

With the strong-coupling solution of Section 5 at hand, we
can now examine temperature-dependent susceptibilities
and other experimentally accessible quantities. Due to the
Mermin-Wagner theorem, there can be no ordered state in
a 1D system [63]. It is therefore customary to characterize
the physical behavior by the most slowly decaying corre-
lation function, which in turn indicates incipient instabil-
ities. We have investigated correlators of Charge-Density
Wave (CDW), Spin-Density Wave (SDW), and supercon-
ducting (SC) type. The results reported in this section are
summarized in Table 1.

One has to carefully distinguish the three temperature
regimes discussed in Section 5, since different instabilities
emerge in different temperature ranges. Furthermore, we
also have to distinguish the spatial oscillation period of the
correlations. It is apparent from the dispersion relation in
Figure 1 that the wavelengths

λ = π/kF , π/qF , π/(kF ± qF ) (6.1)

could occur in a doped armchair SWNT (we put qF > 0
for simplicity). Without doping, only the standard π/kF
wavelength is found, which corresponds to an order opera-
tor effectively involving two 1D fermions at different Fermi
points (α = −α′). In the doped case, the much longer
wavelength π/qF arises if the 1D fermions are at the same
Fermi point but move in opposite directions (r = −r′).
Finally, the wavelength π/(kF ± qF ) corresponds to the
mixed situation (α = −α′, r = −r′). The possible simul-
taneous occurrence of different wavelengths is a remark-
able feature of doped nanotubes which has no analogue in
the standard two-chain problem. This phenomenon has its
ultimate origin in the unique band structure of graphite.

6.1 CDW correlations

In calculating the CDW correlations, we first need to find
the bosonized representation of the y-integrated (this only
amounts to a factor 2πR) density operator q(x). It can be
derived from equation (2.5),

q(x) =

∫
dy
∑
σ

Ψ†σ(x)Ψσ(x)

=
∑

pp′αα′σ

∫
dyϕ∗pα(x)ϕp′α′(x)ψ†pασ(x)ψp′α′σ(x). (6.2)

There is first a “slow” component ρ(x) due to p = p′, α =
α′, whose bosonized form is given in equation (3.11). Fur-
thermore, there is an intra-sublattice (CDW0) order pa-
rameter contributing in equation (6.2),

ÔCDW0(x) ∼
∑
pασ

ψ†pασ(x)ψp,−α,σ(x).

Since the Bloch functions for different sublattices are or-
thogonal, one might now conclude that p 6= p′ cannot
give a contribution to q(x). However, the corresponding
finite (but generally small) matrix element allowing for
a contribution due to the inter-sublattice (CDWπ) order
parameter

ÔCDWπ(x) ∼
∑
pασ

ψ†pασ(x)ψ−p,±α,σ(x)

can be generated by the interactions. Such a mechanism
is well-known from the study of 4kF components in the
density operator for correlated 1D fermions [64].

To make use of the bosonized version, we then employ
the unitary transformation (3.2) and find

ÔCDW0 ∼
∑
rασ

ψ̃†rασψ̃r,−α,σ

∼ sin[
√
πφc− + 2kFx] cos[

√
πθc−]

× cos[
√
πθs−] cos[

√
πφs−]− (cos↔ sin).

(6.3)

The correlation function of ÔCDW0 thus has the wave-
length λ = π/kF and decays exponentially for T < Tb. In
contrast, for T > Tb, its scaling dimension is η = 1. We
therefore omit the CDW0 mode in the sequel as it exhibits
a fast subdominant decay for all temperatures.

Turning to the CDWπ correlations, we find two con-
tributions,

Ô1 ∼
∑
rασ

(−ir)ψ̃†rασψ̃−r,α,σ

∼ cos[
√
πθc+ + 2qFx] cos[

√
πθc−]

× sin[
√
πθs+] sin[

√
πθs−] + (cos↔ sin), (6.4)

Ô2 ∼
∑
rασ

(−ir)ψ̃†rασψ̃−r,−α,σ

∼ cos[
√
πθc+ + 2qFx] cos[

√
πφc− + 2kFx]

× cos[
√
πθs+] cos[

√
πφs−] + (cos↔ sin). (6.5)
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Table 1. Dominant correlations in an armchair SWNT as a function of temperature and of the correlation parameter K < 1,
with the respective scaling dimension η and wavelength λ.

T K Type η λ

T > Tb 1/5 < K SDWπ (3 +K)/4 π/qF , π/(kF ± qF )

K < 1/5 CDWπ 4K π/4qF

Tf < T < Tb 1/2 < K SDWπ (3 + 2K)/8 π/qF

K < 1/2 CDWπ K π/2qF

T < Tf 1/2 < K SC0 1/4K —

K < 1/2 CDWπ K π/2qF

The first operator leads to a slowly oscillating correlation
function with wavelength λ = π/qF , while the second op-
erator implies rapid oscillations with λ = π/(kF ± qF ).
Both operators exhibit exponential decay at the lowest
temperatures, T < Tf . In the intermediate temperature

regime, Tf < T < Tb, Ô2 also leads to exponentially de-

caying correlation functions, but Ô1 has the scaling di-
mension η = (3 + 2K)/8. Finally, in the high-temperature
Luttinger liquid regime, T > Tb, the scaling dimension
η = (3 + K)/4 arises for both operators. For scaling di-
mension η, the equal-time correlation function is

〈Ô1(x)Ô1(x′)〉 ∼ cos[2qF (x− x′)] |x− x′|−2η, (6.6)

and the corresponding susceptibility has the temperature
dependence χ(2qF ) ∼ T 2η−2. For correlations of Ô2, in-
stead of 2qF one has the wavevector 2(kF ± qF ). Since

only the slowly oscillating contribution due to Ô1 exhibits
power-law behavior for Tf < T < Tb, it is favored over the

Ô2 contribution by a larger prefactor for T > Tb, at least
for well-screened interactions.

6.2 Higher-order CDW correlations

There is also a contribution to the density correlation func-
tion effectively originating from squaring the above order
parameters. Even if the original operators are irrelevant,
the emerging higher-order operators can become relevant.
The analogue of this behavior in the standard two-chain
problem has been interpreted as incipient Wigner crys-
tal behavior [52], since it is characterized by a wavelength
π/2kF corresponding to the average electronic spacing.
Such an interpretation is not possible in our case, since
the characteristic wavevector is now 4qF or even 8qF in-
stead of the standard value 4kF .

The operator Ô2
CDW0 stays always irrelevant, but the

squared CDWπ operators give important contributions.
Using equation (5.9), we find the leading terms

Ô2
1 ∼ cos[

√
4πθc+ + 4qFx]

(
− cos[

√
4πθs−]

+ cos[
√

4πθc−]− cos[
√

4πθs+]
)
, (6.7)

Ô2
2 ∼ cos[

√
4πθc+ + 4qFx]

(
cos[
√

4πθs+]

+ cos[
√

4πφc− + 4kFx] + cos[
√

4πφs−]
)
. (6.8)

Here we have kept only contributions containing the θc+
field, since these are the only ones which could become rel-
evant. Since these operators come from products of four
1D fermion operators, the Pauli principle allows exactly
three terms for Ô2

1 and Ô2
2, respectively. The prefactors for

the various terms in equations (6.7, 6.8) are non-universal
and depend on the interactions. The scaling dimension of
these operators is η = 1 + K for T > Tb, so that they
are always irrelevant in the Luttinger liquid regime. Fur-
thermore, for T < Tb, we observe that Ô2

2 also produces
only subleading contributions. In effect, we need to con-
sider only Ô2

1, which indeed becomes a relevant operator
for T < Tb. The scaling dimension in this temperature
regime is η = K, leading to the 4qF oscillatory correla-
tions

〈Ô2
CDWπ(x)Ô2

CDWπ(x′)〉 ∼ cos[4qF (x− x′)] |x− x′|−2K .
(6.9)

This turns out to be the dominant instability at T < Tb
and K < 1/2, see Table 1.

In the same line of reasoning, there also exists an effec-
tive contribution due to Ô4

CDWπ. This operator is relevant
for extremely strong correlations,

Ô4
CDWπ ∼ cos[

√
16πθc+ + 8qFx], (6.10)

with wavelength π/4qF and scaling dimension η = 4K for
all temperatures. By comparing to the scaling dimension
η = (3 + K)/4 of Ô1, the λ = π/4qF CDWπ state is
seen to represent the dominant incipient instability in the
Luttinger liquid regime T > Tb for very strong but still
realistic correlations, K < 1/5. At temperatures below
Tb, the 8qF operator (6.10) leads to only subdominant
contributions and can safely be ignored.

6.3 SDW correlations

Next we turn to spin-density wave correlations. Due to the
underlying SU(2) spin isotropy, it is sufficient to study the
sz correlations which can be readily evaluated. Similar to
the CDW case, we have the order parameters

ÔSDW0(x) ∼
∑
pασ

σψ†pασ(x)ψp,−α,σ(x),

ÔSDWπ(x) ∼
∑
pασ

σψ†pασ(x)ψ−p,±α,σ(x).
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Again the intra-sublattice SDW0 component can be ig-
nored as it only leads to η ≥ 1. This is apparent from the
bosonized representation

ÔSDW0 ∼
∑
rασ

σψ̃†rασψ̃r,−α,σ

∼ cos[
√
πφc− + 2kFx] cos[

√
πθc−]

× cos[
√
πθs−] sin[

√
πφs−]− (cos↔ sin).

(6.11)

The important part comes from the SDWπ order operator

ÔSDWπ ∼
∑
pασ

σψ†pασψ−p,±α,σ.

Rotation to the right/left-moving basis and subsequent
bosonization gives the two operators

Ôa ∼
∑
rασ

(−irσ)ψ̃†rασψ̃−r,α,σ

∼ sin[
√
πθc+ + 2qFx] cos[

√
πθc−]

× cos[
√
πθs+] sin[

√
πθs−] + (cos↔ sin), (6.12)

Ôb ∼
∑
rασ

(−irσ)ψ̃†rασψ̃−r,−α,σ

∼ cos[
√
πθc+ + 2qFx] sin[

√
πφc− + 2kFx]

× cos[
√
πθs+] sin[

√
πφs−] + (cos↔ sin). (6.13)

Both operators lead to exponentially decaying correlations
at T < Tf . Furthermore, in the regime Tf < T < Tb, Ôa
has the same scaling dimension η = (3 + 2K)/8 as the

CDWπ operator Ô1 in equation (6.4), with exponential

decay in Ôb. Finally, for T > Tb, both Ôa,b have again the

same scaling dimension η = (3 + K)/4 as Ô1,2. We then
arrive at exactly the same power laws for SDW and CDW
correlations.

These power laws represent the most slowly decaying
correlations of the system in the wide temperature range
T > Tf , provided the correlations are not too strong, see
Table 1. To discriminate among CDW and SDW corre-
lations, we have to study prefactors of the power laws.
From equations (6.4, 6.12), since cos[

√
πθs+] appears in

Ôa instead of sin[
√
πθs+] for Ô1, and because at temper-

atures T < Tf we have the pinning condition θs+ = 0, see
equation (5.16), the SDW amplitude should be larger than
the CDW amplitude also for T > Tf . The magnetic SDW
correlations then represent the dominant instability of the
nanotube in the temperature regime T > Tf for moderate
correlation strength. Remarkably, they are characterized
by the simultaneous presence of the wavelengths λ = π/qF
and π/(kF ± qF ).

Unfortunately, since the intermediate temperature
regime is absent for externally unscreened interactions,
i.e., Tf ≈ Tb, it appears to be rather difficult to de-
cide which wavelength will eventually be more important
for the experimental setup of reference [18]. For a well-
screened interaction, based on the above discussion, we
expect that the slow wavelength is more important. In

that case, since ÔSDWπ can give a contribution to the 1D
spin density sz(x) via the mechanism discussed in Sec-
tion 6.1, the sz correlations are dominated by the 2qF
oscillatory part,

〈sz(x)sz(x
′)〉 ∼ cos[2qF (x− x′)] |x− x′|−2η.

For the distances |x − x′| where the correlations are not
already vanishingly small, the cosine factor stays essen-
tially at unity. Hence the SDW correlations show a pro-
nounced ferromagnetic character. This reasoning offers an
explanation for the ferromagnetic tendencies observed in
reference [18]. Our explanation could be experimentally
checked by increasing the doping and hence qF . Even-
tually, antiferromagnetism should be recovered for suffi-
ciently strong doping.

6.4 Superconductivity

Predominant superconducting (SC) features have been
predicted recently in two-chain models despite the repul-
sive nature of the Coulomb interaction [41,49,52]. For the
nanotube, the inter-sublattice singlet and all triplet pair-
ing operators cause irrelevant terms and therefore play
no role. The dominant contribution then comes from the
intra-sublattice singlet pairing (SC0) operator

ÔSC0 ∼
∑
pασ

σψpασψp−α−σ.

This gives the bosonized form

ÔSC0 ∼
∑
rασ

σψ̃rασψ̃−r,−α,−σ

∼ cos[
√
πφc+] cos[

√
πθc−]

× cos[
√
πθs+] sin[

√
πφs−]− (cos↔ sin). (6.14)

For T > Tb, this operator has scaling dimension η =
(3 + 1/K)/4 and is therefore irrelevant. In the interme-
diate temperature regime Tf < T < Tb, we find η =

(3 + 2/K)/8, and ÔSC0 is only subleading. However, for
T < Tf , we obtain

〈ÔSC0(x)ÔSC0(x′)〉 ∼ |x− x′|−1/2K . (6.15)

Therefore singlet superconductivity becomes the domi-
nant instability at extremely low temperatures and for ex-
ternally screened interactions with K > 1/2. In practice,
superconducting correlations are thus of little importance
in carbon nanotubes.

6.5 Tunneling density of states

Under typical experimental conditions, the contact be-
tween a SWNT and the attached Fermi-liquid leads is not
always adiabatic. For nonadiabatic contacts, the physics of
the conductance is related to single-electron tunneling into
the nanotube, which in turn is governed by the tunneling



296 The European Physical Journal B

density of states (TDOS). A similar situation also arises in
tunneling microscope experiments. Here the electron tun-
neling occurs close to the impurity position, the role of
the impurity being played by the probe itself. Therefore
let us now discuss the TDOS of a SWNT. The presence
of an open boundary, either due to the finite length of the
nanotube or due to a strong impurity, can alter correla-
tion functions and, in particular, modify the anomalous
exponents [33]. Hence, in calculating the TDOS close to
the end of the SWNT, we have to employ the open bound-
ary bosonization method. The latter can be developed for
nanotubes in full analogy to spin chains [65] and quan-
tum wires [35]. Here we shall give the main ideas of the
approach but avoid technical details, which the interested
reader can find in references [35,65].

For simplicity, let us consider a semi-infinite nanotube,
x > 0. The left-moving electrons in the nanotube then
undergo perfect reflection at x = 0, where they are trans-
formed into a right-mover going back to x → ∞. Mathe-
matically, the perfect reflection leads to boundary condi-
tions imposed on the right- and left-moving electron field
operators at x = 0,

ψ̃+ασ(0) = exp(iδ0) ψ̃−ασ(0). (6.16)

Here δ0 is a scattering phase shift, which depends on the
shape-confining potential. For example, if the end of the
nanotube has dangling (but hydrogen-saturated) bonds,
δ0 is different compared to a closing cap, i.e., if the nan-
otube closes into a fullerene half-sphere. However, this
phase shift is of no further interest here and can be chosen
as zero by shifting the position of the boundary [35].

Due to the boundary condition (6.16), the right- and
left-movers are not independent fields anymore. It there-
fore makes sense to switch to a description in terms of
only a right-moving field which is now defined for all x,

Ψασ(x) =

{
ψ̃+ασ(x) (x > 0),

ψ̃−ασ(−x) (x < 0).
(6.17)

The advantage of this representation is that the right-
moving field operator Ψασ, being defined on the infinite
interval, can be standardly bosonized,

Ψασ(x) =
1
√

2πa
exp[iϕασ(x)], (6.18)

where ϕασ is a chiral Bose field. For brevity, we have omit-
ted the Klein factors and the oscillating spatial exponent.
Both cancel out in what follows. It is then helpful to define
the chiral fields

Φc+ =
1

4
√
π

∑
ασ

ϕασ,

Φc− =
1

4
√
π

∑
ασ

αϕασ ,

Φs+ =
1

4
√
π

∑
ασ

σϕασ ,

Φs− =
1

4
√
π

∑
ασ

ασϕασ .

In terms of these fields, equation (6.18) takes the form

Ψασ =
1
√

2πa
exp

{
i
√
π [Φc+ + αΦc− + σΦs+ + ασΦs−]

}
.

(6.19)

If electron-electron interactions are neglected, the Φjδ are
free chiral fields with the Hamiltonian

H0 = −i
∑
rασ

r

∫ ∞
0

dx ψ̃†rασ∂xψ̃rασ

= −i
∑
ασ

∫ ∞
−∞

dxΨ†ασ∂xΨασ

= v
∑
jδ

∫
dx (∂xΦjδ)

2. (6.20)

In the presence of interactions, however, the nonlocal rep-
resentation (6.17) causes nonlocal interaction terms of the
form ρ(x)ρ(−x) such that the electron densities are cou-
pled at mirror-imaged points. Nevertheless, this interac-
tion remains quadratic in the Bose field and can be diag-
onalized. Following the steps of reference [35], the appro-
priate Bogoliubov rotation is

Φc+(x)→ c Φc+(x) − sΦc+(−x), (6.21)

where c = coshφ0 and s = sinhφ0 parametrize the Lut-
tinger liquid exponent K = exp(2φ0).

Two remarks are in order here. (1) We only consider
the Luttinger liquid phase T > Tb in the following. Then

the only important interaction term is H
(0)
αFS . In the low-

temperature massive phases, the single-electron TDOS de-
velops a gap, but there could still be gapless higher-order
multi-electron scattering processes. (2) We consider the
zero-momentum limit for the charge exponent K, i.e., dis-
tances (times) larger than the Coulomb screening length.
The behavior of the correlation functions for distances
closer to the boundary than the screening length is fairly
complex, see Appendix C of reference [35].

Combining equations (6.19, 6.21), we obtain the main
formula of the open boundary bosonization,

Ψασ(x) =
1
√

2πa
exp
(
i
√
π [cΦc+(x) − sΦc+(−x)

+αΦc−(x) + σΦs+(x) + ασΦs−(x)]
)
. (6.22)

It follows that close to the boundary, i.e., for max(x, y)�
vt, the single-electron Greens function is of the form

〈Ψ†(x, t)Ψ(y, 0)〉 ∼ t−(1/K+3)/4. (6.23)

The boundary scaling dimension of the electron field op-
erator is therefore

∆̄ =
1

8K
+

3

8
, (6.24)

as opposed to its bulk scaling dimension,

∆ =
1

16

(
1

K
+K

)
+

3

8
· (6.25)
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Making use of the text-book definition of the density of
states as the imaginary part of the single-electron Greens
function, we obtain for the TDOS at the end of the nan-
otube,

ρend(ω) ∼ ω2∆̄−1, (6.26)

which is different from the bulk density of states

ρbulk(ω) ∼ ω2∆−1. (6.27)

Since ∆̄ > 1/2 for K < 1, the TDOS always vanishes with
the frequency (or the temperature) approaching zero, sim-
ilar to the situation encountered in quantum wires [33].
For a Fermi liquid, we would instead have ∆ = ∆̄ = 1/2,
and the exponents in equations (6.26, 6.27) are both zero.
For the (10, 10) nanotube of reference [18], taking our pre-
vious estimateK ' 0.18, the exponents in equations (6.26,
6.27) are 1.13 and 0.46, respectively. Therefore single-
electron tunneling is strongly suppressed close to the end
of the nanotube. Finally, we stress again that these re-
sults are also valid in the vicinity of a strong impurity. At
low energy scales, the SWNT is effectively cut into two
independent parts because of the impurity, see Section 7.

7 Transport and conductance laws

In this section, we discuss transport through a SWNT.
Since non-Fermi liquid laws are only pronounced if con-
tact resistances between the attached leads and the nan-
otube are smaller than ≈ h/e2, we assume good con-
tact to the transport voltage sources. Since there are
four transport channels (jδ), a SWNT adiabatically con-
nected to external leads exhibits the perfect conductance
G = G0 = 4e2/h in the absence of impurity backscat-
tering. Even in the presence of weak backscattering, G
approaches G0 at sufficiently high temperatures.

The effect of impurities on the conductance can be
very pronounced in a Luttinger liquid [33]. In a SWNT,
there are several possible sources for impurities as dis-
cussed in the Introduction. The dominant coupling to the
impurity is due to the CDWπ operators Ô1 and Ô2 in
equations (6.4, 6.5). Since both operators have essentially

the same effect, we focus on Ô1 and get the form

Himp =

∫
dxm(x)

(
cos[
√
πθc+ + 2qFx] cos[

√
πθc−]

× sin[
√
πθs+] sin[

√
πθs−] + (cos↔ sin)

)
. (7.1)

From the perturbation series in m(x) for the partition
sum, one can check that the higher-order operators of Sec-
tion 6.2 are implicitly contained in equation (7.1). There
is no need to explicitly take them into account in Himp.

Let us analyze the consequences of this Hamiltonian
for the simplest case of a single pointlike impurity, m(x) =
mδ(x). We assume an impurity without any internal dy-
namics, e.g., a frozen twist of the nanotube. The conduc-
tance corrections δG defined by G = G0 − δG depend on

the temperature regime under study. Perturbation theory
yields in order m2 the power laws

δG ∼ T (K−1)/2 (T > Tb), (7.2)

∼ T (2K−5)/4 (Tf < T < Tb). (7.3)

At very low temperatures, T < Tf , one is in the strong-
coupling regime and perturbation theory does not apply
anymore. In fact, we find that the conductance is totally
suppressed at zero temperature. In the regime T < Tf ,
the average value of the impurity operator (7.1) vanishes,
while its correlation function decays exponentially in time.
At first sight, the impurity has therefore no effect. How-
ever, it may still generate a relevant operator. In order to
see how this happens, we calculate the second-order cor-
rection to the action due to the local impurity operator,

δS2 ∼ m2

∫
dτ

∫
dτ ′ exp[−γ|τ − τ ′|]

× cos[
√
πθc+(0, τ)] cos[

√
πθc+(0, τ ′)],

where γ ∼ mf characterizes the decay rate of correlations
of the gapped degrees of freedom involved in the impurity
operator (7.1). Since we are interested in the low-energy
(long-time) behavior of the system, we are eligible to con-
tract the τ and τ ′ variables in the above integration. Then,
using the operator identity (5.9), the total charge field sat-
isfies the effective Hamiltonian

Heff [θc+] = H0[θc+] +
Λ

πa
cos[
√

4πK θc+(0)], (7.4)

where the effective impurity strength is estimated to be
Λ ∼ m2/mf , and we have rescaled θc+ →

√
Kθc+. Of

course, the exponent found in equation (7.5) below is in-
dependent of Λ. Note that the result (7.4) also follows
from equation (6.7) for T < Tf by virtue of the pinning
conditions discussed in Section 5.

The effective Hamiltonian (7.4) is now identical to the
one describing an impurity in a spinless Luttinger liquid.
The reasoning of Kane and Fisher [33] therefore fully ap-
plies and yields the low-temperature conductance

G ∼ T−2+2/K . (7.5)

This implies a total suppression of transport through the
nanotube at T = 0 in the presence of a single, arbitrarily
weak impurity.

Finally, we mention that Luttinger liquid behavior
could also be observed in experiments on crossed nan-
otubes. Nonequilibrium transport through crossed Lut-
tinger liquids has been studied theoretically in refer-
ence [66]. Following this analysis, a distinct nonlinear de-
pendence of the current through one SWNT (j = 1) on
the cross voltage applied to the other SWNT (j = 2) can
be expected. Assuming a point-like contact between both
nanotubes at x = 0, the only important coupling mecha-
nism is of electrostatic nature,

Hc = λ̃ ρ1(0)ρ2(0), (7.6)
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which becomes relevant if the scaling dimension η of
the individual local density operators ρj=1,2(0) satisfies
η < 1/2. This condition can only be met by the higher-
order CDWπ contributions in Section 6.2. In the Luttinger
liquid regime T > Tb, the leading operator is Ô4

CDWπ in
equation (6.10), with η = 4K. The coupling (7.6) is then
irrelevant unless the condition K < 1/8 is fulfilled. Ac-
cording to equation (3.23), such strong correlations could
be achieved by studying sufficiently long nanotubes. Fur-
thermore, at lower temperatures T < Tb, the dominant
coupling comes from Ô2

1 in equation (6.7), with η = K.
Therefore the relevancy condition is now less stringent,
K < 1/2, and the effects predicted in reference [66] should
show up already for short nanotubes at sufficiently low
temperatures.

8 Impurity screening

In this section, we study the electronic screening cloud in-
duced by an impurity sitting at, say, x = 0. This could be a
substitutional atom replacing one of the carbon atoms on
the tube surface (like B or N), an intercalating atom (like
Na) sitting inside the nanotube at some radius r < R, or
an incident positron. The (externally unscreened) Fourier
transformed potential for impurity charge Ze is [38]

Ṽimp(q) = 4πZe2I0(qr)K0(qR), (8.1)

with the modified Bessel functions I0 and K0 [46]. The
small-q response of the π electrons to this perturbation
can be computed in an exact manner by linear screening,
and the RPA treatment and the corresponding results of
reference [38] fully apply. However, for the finite wavevec-
tors listed in equation (6.1), linear screening is known to
break down in one dimension [34–37]. The 1D Friedel os-
cillation cannot be computed by an RPA-like treatment.

The impurity strength m determining the amplitude

of the Friedel oscillation is given by Ṽimp(2qF ) (for wave-

length λ = π/qF ), or Ṽimp(2kF ) (for λ = π/kF '
π/(kF ± qF )). In the latter case, m is strongly dependent
on the position of the impurity. If the impurity sits in the
center of the nanotube (r = 0), we get exponential sup-
pression ofm due to equation (8.1). This implies a strongly
reduced amplitude of the Friedel oscillation. However, the
actual value of m does not affect the power laws reported
below. These are universal, i.e., independent of strength,
position r, or nature of the impurity.

As discussed in Section 6.1, the 1D density operator
q(x) has several contributions. The expectation value of
the slow part ρ(x) in the presence of the impurity can be
obtained by RPA [38] and is not further discussed here.
The contributions beyond ρ(x) are due to the CDW or-
der operators in Section 6. These arise from mixing the
different types of 1D fermion operators.

Following reference [34], it is straightforward to ex-
tract the power law decay of the Friedel oscillation. For
T > Tb, the CDWπ operators Ô1 and Ô2 specified in equa-
tions (6.4, 6.5) lead to the simultaneous presence of the

wavelengths π/qF and π/(kF ± qF ). Contrary to the RPA
analysis [38], our exact treatment of Coulomb interactions
yields for x� a [34,67],

〈q2qF (x)〉 ∼ cos[2qFx] (x/x0)−(3+K)/4 (x� x0)

∼ cos[2qFx] (x/x0)−(1+K)/2 (x� x0), (8.2)

〈q2kF (x)〉 ∼ cos[2(kF ± qF )x] (x/x0)−(3+K)/4 (x� x0)

∼ cos[2(kF ± qF )x] (x/x0)−(1+K)/2 (x� x0).
(8.3)

We omit possible phase shifts here. Furthermore, x0 sets
the appropriate length scale, which can be different for
the various oscillation periods since it depends on the im-
purity strength, x0 ∼ m−4/(1−K). The asymptotic expo-
nents for x � x0 can be obtained from open boundary
bosonization, see Section 6.5, while the behavior close to
the impurity follows from perturbation theory in m. Here
the important point is that the Friedel oscillation is al-
ways slower than the standard 1/x Fermi liquid result.
Furthermore, the decay becomes slower as the impurity is
approached. Following the reasoning of reference [36], the
slow decay of the Friedel oscillation is the physical rea-
son for the conductance suppression by a single impurity
discussed in Section 7. Interestingly, we have again several
different oscillation periods, namely a slow one, λ = π/qF ,
which is superimposed onto rapid oscillations with wave-
length λ = π/(kF ± qF ). The Friedel oscillations induced
by a strong impurity or by the ends of the nanotube can
be quite pronounced and should be detectable by placing
a STM tip close to the nanotube.

The power laws (8.2) and (8.3) are modified due to
the 8qF operator (6.10) in the case of extremely strong
correlations. This operator plays no role at temperatures
T < Tb, but in the Luttinger liquid regime it becomes
dominant as soon as K < 1/5. Instead of equations (8.2,
8.3), we then find the wavelength π/4qF ,

〈q8qF (x)〉 ∼ cos[8qFx] (x/x0)−4K (x� x0)

∼ cos[8qFx] | ln(x/x0)| (x� x0). (8.4)

The only logarithmically slow decay of the Friedel oscilla-
tion close to the impurity follows from reference [68].

The behavior of the Friedel oscillations discussed so
far applies only to the “Luttinger liquid” regime, T > Tb.
In the intermediate temperature regime, Tf < T < Tb,
and for not too strong correlations, 1/2 < K < 1, the
exponents in these power laws become −(3 + 2K)/8 for
x � x0, and (1 − 2K)/4 for x � x0, respectively. For
strong correlations, K < 1/2, the squared CDWπ opera-

tors of Section 6.2 are more important than Ô1 and Ô2.
In that case, only the slow oscillation period π/2qF corre-
sponding to equation (6.7) shows up, and we obtain

〈q4qF (x)〉 ∼ cos[4qFx] (x/x0)−K (x� x0)

∼ cos[4qFx] | ln(x/x0)| (x� x0). (8.5)

Finally, at the lowest temperatures, T < Tf , the same
result is found for K < 1/2. ForK > 1/2, the perturbative
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exponent ∼ x1−2K applies to the short-distance behavior,
with the same asymptotic exponent as in equation (8.5).

The overall behavior of Friedel oscillations in nan-
otubes is considerably more complicated than predicted by
linear screening. We find several different slow algebraic
power laws in various regions of parameter space. They
are all slower than the standard 1/x decay. Furthermore,
there exist different wavelengths for the respective domi-
nant contributions. If measurements of the charge screen-
ing cloud become feasible, one could extract the important
correlation parameter K and directly observe the various
regions of the phase diagram corresponding to Table 1
from the Friedel oscillation.

9 Conclusions

In this work we have formulated and analyzed the effec-
tive low-energy theory of isolated single-wall carbon nan-
otubes. Long and clean nanotubes have already been fab-
ricated, and we believe that the non-Fermi liquid effects
discussed here will be observed in the near future.

In fact, there is some evidence that one of these ef-
fects, namely the predominance of ferromagnetic correla-
tions, has already been observed in reference [18]. Other
signatures of non-Fermi-liquid behavior include anoma-
lous interaction-dependent power laws for the conductance
or the tunneling density of states. Nanotubes are promis-
ing candidates for revealing the Luttinger liquid behavior
generally expected for one-dimensional metals. According
to our theory, at temperatures above the scale Tb (where
Tb ≈ 0.1 mK for the setup of Ref. [18]), a nanotube be-
haves as a spin- 1

2 Luttinger liquid with an additional flavor
index. At lower temperatures, more complicated phases
characterized by gaps in the neutral modes emerge.

A special feature of doped nanotubes is the simulta-
neous occurrence of different wavelengths for the various
order parameter correlations. The doping is characterized
by a small wavevector qF � kF , and one quite gener-
ally finds pronounced instabilities for the long wavelengths
λ = π/qF , π/2qF and π/4qF , besides the short wavelength
λ = π/(kF ±qF ). Another interesting aspect of nanotubes
is the length (L) dependence of their properties. For in-
stance, considering a SWNT with sufficiently small L, our
continuum approach for explaining ferromagnetic tenden-
cies should eventually be replaced by a Hund’s rule apply-
ing to the “molecule”. In our opinion, this transition from
a molecule to the “solid-state” limit of large L deserves
further attention.

The physics of nanotubes is likely to reveal further sur-
prises in the future. Besides the exciting prospect of find-
ing Luttinger liquid behavior in a potentially very clean
way, nanotubes might act as basic elements for molecular
electronics devices, e.g., as highly conducting wires. An-
other line of development could employ networks of nan-
otubes, where novel correlation effects can be anticipated.
We hope that our theory will be useful in addressing and
resolving these issues.

We wish to thank C. Dekker, M.H. Devoret, H. Grabert,
C.L. Kane and A.A. Nersesyan for inspiring discussions, and
acknowledge financial support by the EPSRC of the United
Kingdom.
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